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Abstract
As known, the magnetic properties of AGCMs are determined by the radial,
azimuthal and axial internal stresses induced during both the preparation process
and the suitable thermal treatments of these microwires. In this paper we have
proposed a theoretical model in order to determine the total internal stresses
induced during the dc joule-heating thermal treatment (heating–crystallization–
cooling). In this view (i) we have started from the internal stress values obtained
in the preparation process, (ii) we have considered the supplementary axial
tensile stresses due to the mechanical drawing of the microwire during the
preparation process and (iii) we have taken into account the difference between
the thermal expansion coefficients of metal and glass. We have found that (i)
the maximum value of the axial stresses obtained after the thermal treatment is
bigger than that obtained in the preparation process, the difference being about
450 MPa, (ii) the maximum values for the azimuthal and radial stresses decrease
by ∼=220 and ∼=210 MPa respectively, (iii) the dimensions of the cylindrical
inner core increase significantly (by ∼=13%), which involves an increase of
the degree of magnetic order in the AGCMs and consequently leads to the
appearance of a large Barkhausen effect (LBE) in low axially applied magnetic
fields and (iv) the reduced remanence increases from 0.90 to 0.95.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The amorphous glass-covered microwires (AGCMs) form a class of materials of great
technological importance. They are receiving considerable experimental and theoretical
attention, because of their superior mechanical, magnetic and electrical properties in
comparison with similar counterparts.
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AGCMs exhibit the giant magnetoimpedance effect, which makes them very interesting
for microdevice sensors and electronic devices, also ensuring a high corrosion and mechanical
resistance [1, 2]. Their magnetic, electric and structural properties strongly depend on the
thermal treatment. The dc joule-heating treatment applied to AGCMs allows, for instance,
the control of the internal stresses, the magnetostriction constant and the induced anisotropies.
The dc joule-heating techniques are very convenient tools in studying and understanding the
magnetic properties of these materials.

Usually, AGCMs are prepared by rapid quenching from the melt, using the glass-coated
melt-spinning method [3]. Both the preparation method and the glass cover induce in the
AGCM’s metallic core large internal stresses (of about 109 Pa [4]). Due to these stresses, the
strong magnetoelastic coupling becomes very important in the study of the magnetoelastic
anisotropy. A suitable thermal treatment (for instance the dc joule-heating method) has a
huge experimental—as well as theoretical—interest, because it can be used to reduce the
magnetoelastic coupling. This method also allows a better control of the internal stress
distribution, the magnetostriction constant and the induced anisotropy, which leads to an
improvement of the AGCM’s magnetic properties.

Besides, due to the internal stresses induced in the preparation process [5–7], the magnetic
domain structure can be considerably modified by a proper thermal treatment. Thus, the
AGCM’s magnetic properties are related to the mechanical stresses induced both in the
preparation and the annealing processes.

During the preparation process of the AGCMs, the induced radial, azimuthal and axial
stresses have an important role in determining the magnetic properties of this type of
microwires. The values and distribution of these stresses depend on the radius of the metal
and on the thickness of the glass cover [4]. Unlike the conventional wires, in the case of the
AGCM the internal stresses come from both the thermal process which accompanies the heating
and/or cooling of the material and the constraints produced on the metal by the glass cover, as
a result of the difference between the thermal expansion coefficient of the two materials.

The relatively small dimensions of the AGCMs (the diameter of the metallic part ranging
between 3 and 25 µm and the thickness of the glass cover ranging between 2 and 15 µm),
as well as the influence of the glass insulation on the physical properties of the metallic core,
offer attractive possibilities in studying the improvement of the magnetic behaviour of these
materials and open a large field of potential technological applications.

A great number of papers have been recently published on this subject. The large number
of experimental data refers to the induced internal stresses and the effect of these stresses on
different properties of the AGCMs [1, 2, 6]. But a systematic theoretical study on this subject,
able to emphasize the spatial and temporal variation of the induced internal stresses during
a thermal treatment, has not been reported yet. Therefore, the main purpose of the present
paper is to determine the stresses that appear in the annealing process by a dc joule-heating
treatment.

A similar study was developed by Chiriac et al [4], but their approach was focused on the
internal stresses appearing in these structures due to the preparation process only (the glass-
coated melt-spinning method).

As known [8–10], the joule-heating method usually implies the use of an electrical dc
to produce (when passing through the AGCM) an electrical resistivity variation, which, in
turn, leads to a variation of the developed joule power and subsequently to a corresponding
variation in the temperature distribution. As will be shown in the following, this temperature
variation considerably influences the internal stresses in the AGCM, leading to an improvement
of their magnetic properties. It is well known that AGCMs with an Fe77.5B15Si7.5 composition
exhibit a positive magnetostriction, while the stresses induced in the metallic core by the radial
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temperature gradients and also by the glass insulation lead to a large Barkhausen effect (LBE)
in the metallic core of the samples [11, 12].

Considering at least a linear dependence of the resistivity on the temperature and the dc
joule-heating effects (conduction and radiative losses, as well as the structural changes during
the crystallization process), we first present a theoretical model for the determination of the
radial and temporal temperature distribution, both in the metallic core and the glass cover of an
AGCM. Then, the knowledge of the radial temperature distribution corresponding to a given
value of the annealing electrical dc passing through the sample [13] allows the calculation of
the internal stresses as a function of I (A). The distribution analysis for these stresses provides
useful information concerning the modifications of the annealed AGCM’s magnetic properties.
A comparison between our theoretical results and the experimental data will be presented at the
end of this paper.

The paper is conceived as follows:

• section 1 marks an introduction;
• in section 2, we present the main aspects of the theoretical formalism which can be used in

order to find the induced internal stresses both in the metallic core and in the glass cover
of an AGCM subjected to a dc joule-heating annealing;

• section 3, having three subsections, presents the effective calculation of the induced
stresses which appear in the three successive stages of the thermal treatment, i.e.

(a) during the heating of the sample, until it reaches the temperature corresponding to the
onset of the crystallization process,

(b) during the crystallization process and
(c) during the cooling of the crystallized sample until it reaches room temperature;

for each of these stages we first determined the corresponding temperature distribution in
the sample necessary to evaluate the internal stresses;

• in section 4 the total stresses are obtained starting from the internal stresses induced in the
preparation process of the sample and taking into account the modifications brought by the
three stages of the thermal treatment presented in the previous section;

• section 5 is dedicated to discussion and conclusions.

2. Internal stresses induced by the temperature gradient in AGCMs

In this section we calculate the internal stresses induced in AGCMs due to the joule heating of
the sample during the thermal treatment, taking into account the difference between the thermal
expansion coefficients of the two materials in contact (metallic core and glass cover).

In most cases, AGCMs consist in a cylindrical metallic core with a diameter of (3–25) µm,
covered by glass insulation with a thickness of (2–15) µm [4].

Let us consider an AGCM, placed in vacuum at a pressure less than 103 Pa, subjected to
a dc joule-heating thermal treatment. We assume that the cylindrical metallic core has a radius
Rm and the glass insulation has the thickness Rw − Rm, where Rw is the total radius of the
microwire (metal + glass). We associate a cylindrical system of coordinates (r , θ , z) with the
sample, having the Oz-axis along the microwire’s axis (see figure 1).

We consider that the components of the displacement vector �u of any point of the
microwire, namely ur , uθ and uz , are independent of each other. Due to the spatial symmetry of
the heating process, and implicitly of the displacements and strains generated by this process,
uθ = constant both in the metal and in the glass. Because of this we will be interested only in
the radial (ur ) and axial (uz) components of the vector �u.



2692 I Aştefănoaei et al

Figure 1. The spatial orientation of the AGCM. Rm is the radius of the metallic core and Rw is the
total microwire’s radius.

The radial temperature gradients lead to the appearance of some displacements, both in the
metallic core (um

r and um
z ) and in the glass insulation (ug

r and ug
z ). These displacements satisfy

the differential displacements’ equation. In cylindrical coordinates this equation reads [14, 15]

d

dr

[
1

r

d(um
r r)

dr

]
= 1 + µ

1 − µ
αm

dT (r)

dr
, (1)

dum
z

dz
= constant, (2)

for the metal core and

d

dr

[
1

r

d(ug
r r)

dr

]
= 1 + µ

1 − µ
αg

dt (r)

dr
, (3)

dug
z

dz
= constant, (4)

for the glass cover. In the above relations αm and αg are the metallic core’s and respectively the
glass cover’s thermal expansion coefficients, µ is the Poisson’s coefficient, T (r) is the radial
temperature distribution in the metallic core of the sample and t (r) is the radial temperature
distribution in the glass cover. It is assumed that the values of Poisson’s coefficient for
metal and glass are the same: µmetal = µglass = µ = 1

3 . The solutions of equations (1)
and (2) (representing the radial, um

r (r) and axial, um
z displacements in the metallic core of the

microwire) have the form

um
r (r) = αm

r

(
1 + µ

1 − µ

)∫ r

0
r T (r) dr + Cm

1

2
r + Cm

2

r
(5)

and respectively,

um
z = bmz, (6)

where Cm
1 , Cm

2 and bm are the integration constants. Let us notice that in the centre of the
microwire (at r = 0), due to the spatial symmetry of the process, there is actually no radial
displacement, i.e., um

r (r = 0) = 0. This implies in relation (5) that Cm
2 = 0; consequently, the

radial displacement um
r (r) becomes

um
r (r) = αm

r

(
1 + µ

1 − µ

)∫ r

0
r T (r) dr + Cm

1

2
r. (7)
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Equations (3) and (4) have the following solutions:

ug
r (r) = αg

r

(
1 + µ

1 − µ

)∫ Rw

Rm

r t (r) dr + Cg
1

2
r + Cg

2

r
(8)

and respectively,

ug
z = bgz, (9)

where Cg
1 , Cg

2 and bg are the integration constants. In the cylindrical coordinates, the
components of the strain tensor for the metallic core (um

rr , um
θθ , um

zz) and for the glass cover (ug
rr ,

ug
θθ , ug

zz) can be obtained using the displacements given by relations (6)–(9), and considering
the azimuthal displacements (um

θ and ug
θ ) as constants. The diagonal components of the strain

tensor (assuming that the other components are zero) for the metallic core are

um
rr = ∂um

r

∂r
= −αm

r 2

(
1 + µ

1 − µ

)∫ r

0
r T (r) dr + Cm

1

2
+ αm(1 + µ)T (r)

1 − µ
, (10a)

um
θθ = um

r

r
= αm

r 2

(
1 + µ

1 − µ

)∫ r

0
r T (r) dr + Cm

1

2
, (10b)

um
zz = dum

z

dz
= bm (10c)

and for the glass cover,

ug
rr = ∂ug

r

∂r
= αg(1 + µ)t (r)

1 − µ
− αg

r 2

(
1 + µ

1 − µ

)∫ r

Rm

r t (r) dr + Cg
1

2
− Cg

2

r 2
, (11a)

ug
θθ = ug

r

r
= αg

r 2

(
1 + µ

1 − µ

)∫ r

Rm

r t (r) dr + Cg
1

2
+ Cg

2

r 2
, (11b)

ug
zz = dug

z

dz
= bg. (11c)

As follows from figure 1 for the metallic core, the range in which the radial coordinate r takes
values in the metallic region is (0, Rm], whereas for the glass cover the same coordinate takes
values in the interval (Rm, Rw].

The diagonal components of the stress tensor in the metallic core (σ m
rr , σ m

θθ , σ m
zz ), as well as

in the glass cover (σ g
rr , σ

g
θθ , σ

g
zz), can be determined using the generalized Hooke’s law:

σik = E

1 + µ

[
uik + µ

1 − 2µ
ullδik

]
. (12)

Thus, substituting the strain tensor components given by relations (10) in the Hooke’s law (12)
for the diagonal components of the stress tensor in the metallic core, we give the following
expressions:

σ m
rr = Em(Cm

1 + 2µbm)

2(1 + µ)(1 − 2µ)
− Emαm

r 2(1 − µ)

∫ r

0
r T (r) dr, (13a)

σ m
θθ = Em(Cm

1 + 2µbm)

2(1 + µ)(1 − 2µ)
+ Emαm

r 2(1 − µ)

∫ r

0
r T (r) dr − αm EmT (r)

1 − µ
(13b)

and

σ m
zz = Em(Cm

1 + 2µbm)

(1 + µ)(1 − 2µ)
− αm EmT (r)

1 − µ
. (13c)
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Accordingly, using the relations (11) and (12) for the diagonal components of the stress tensor
in the glass cover we obtain the following expressions:

σ g
rr = Eg(C

g
1 + 2µbg)

2(1 + µ)(1 − 2µ)
− Egαg

r 2(1 − µ)

∫ r

Rm

r t (r) dr − EgCg
2

(1 + µ)r 2
, (14a)

σ
g
θθ = Eg(C

g
1 + 2µbg)

2(1 + µ)(1 − 2µ)
+ Egαg

r 2(1 + µ)

∫ r

Rm

r t (r) dr + EgCg
2

(1 + µ)r 2
− αg Egt (r)

1 − µ
(14b)

and

σ g
zz = Eg(C

g
1 + 2µbg)

(1 + µ)(1 − 2µ)
− αg Egt (r)

1 − µ
. (14c)

In relations (13) and (14) Em and Eg are the Young’s moduli for the metal and for the glass,
respectively.

We will now determine the resultant strain due to the different heating of the two materials
with different thermal expansion coefficients, being in contact during the entire thermal process.
As is well known, the law of the linear thermal expansion is

l = l0(1 + α�T ) (15)

in which l is the linear dimension of the sample in the chosen direction, at the temperature T , l0

is the same linear dimension at the temperature T0, �T = T (r = Rm) − T0 is the temperature
range in which the variation �l = l − l0 takes place, and α is the thermal expansion coefficient.
From (17) we have for the metal region

εm = αm(T (r = Rm) − T0), (16)

and for the glass cover

εg = αg(t (r = Rm) − T0), (17)

where εm and εg are the strains due to the thermal contraction in the metal and glass respectively,
and αm and αg are the corresponding thermal expansion coefficients. Because of the continuity
of the temperature fields at the point r = Rm, T (r = Rm) = t (r = Rm), it follows that the
resultant strain is

ε = εm − εg = (αm − αg)�T . (18)

In our case, �T is the difference between room temperature and the temperature at the point
r = Rm. During the thermal treatment of the microwire, due to the difference between the
thermal expansion coefficients of glass and metal, the glass cover induces specific tensions in
the metallic core. In order to find the resultant stress tensor components, σ m

rr , σ m
θθ , σ m

zz , σ
g
rr ,

σ
g
θθ and σ

g
zz , we must calculate the values of the constants Cm

1 , Cg
1 , Cg

2 , bm and bg, taking into
account the different values of the thermal expansion coefficients of the two materials (metal
and glass). This can be done using the equilibrium conditions that must be satisfied by the
stresses which appear both at the metal–glass interface,

σ m
rr (r = Rm) − σ g

rr (r = Rm) = 0, (19)

σ m
zz (r = Rm) + Sσ g

zz(r = Rm) = 0 (20)

and at the exterior surface of the microwire,

σ g
rr (r = Rw) = 0. (21)
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First of all, the following conditions have to be imposed, so that all the strains appearing in this
process are due only to the difference between the thermal expansion coefficients of the metal
and glass:

um
z (r = Rm) − ug

z (r = Rm) = εz (22)

and

um
r (r = Rm) − ug

r (r = Rm) = εRm. (23)

In relation (20), S = Sg
tr

Sm
tr

= R2
w

R2
m

− 1, where Sg
tr and Sm

tr are the cross section areas of the glass
cover and of the metallic core, respectively. Therefore, substituting the expressions for σ m

rr ,
σ m

zz , σ
g
rr , σ

g
zz , um

r , um
z , ug

r and ug
z in relations (22), (23) and (19)–(21) we get the following

five-equation algebraic system:

bm − bg = ε, (24)

1

R2
m

(
1 + µ

1 − µ

)∫ Rm

0
r(αmT (r) − αgt (r)) dr + (Cm

1 − Cg
1 ) − Cg

2

R2
m

= ε, (25)

Em(Cm
1 + µbm)

(1 + µ)(1 − 2µ)
− Emαm

(1 − µ)R2
m

∫ Rm

0
r T (r) dr = Eg(C

g
1 + µbg)

(1 + µ)(1 − 2µ)
− EgCg

2

(1 + µ)R2
m

, (26)

2µEm(Cm
1 + µbm)

(1 + µ)(1 − 2µ)
− αm EmT (r = Rm)

1 − µ
+ 2µSEg(C

g
1 + µbg)

(1 + µ)(1 − 2µ)

− αgSEgt (r = Rm)

1 − µ
= 0, (27)

Cg
1 + µbg

(1 + µ)(1 − 2µ)
− Cg

2

(1 + µ)R2
w

= αg

(1 − µ)R2
w

∫ Rw

Rm

r t (r) dr, (28)

with the five unknowns Cm
1 , Cg

1 , Cg
2 , bm and bg. These constants result as a solution of

this system. Using this solution in relations (13) and (14) we finally get the expressions
of the internal stresses induced by the radial temperature gradient, taking into account the
difference between the two thermal expansion coefficients (of metal and glass) during the
thermal treatment by dc joule heating of AGCMs.

Therefore, the internal stresses induced by the thermal gradients both in the metallic core
(σ m

rr , σ m
θθ , σ m

zz ) and in the glass cover (σ g
rr , σ g

θθ and σ
g
zz) during a thermal treatment of the AGCM

are given by relations (13) and (14) together with the five constants Cm
1 , Cg

1 , Cg
2 , bm and bg

(obtained as the solution of the equation system (24)–(28)).

3. Internal stresses induced during the dc joule-heating treatment

The so-called technique of dc joule heating involves relatively low electrical currents (up to
4 A) which pass through the sample for long times (1–100) s and emerges as the natural choice
when the details of the structural transformations occurring within the sample have to be known
with accuracy [9].

In this section we analyse the thermal behaviour of AGCMs and the internal stress
distribution during dc joule heating, taking into account the linear dependence of the electrical
resistivity on temperature and the structural changes during the crystallization process. The
theoretical and experimental considerations refer separately to the two different situations,
namely

(1) the amorphous state, when the temperature values are below the onset temperature of
crystallization, and
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(2) the transition from the amorphous to the crystalline state, when both phases appear.

In order to calculate the internal stresses distribution we will analyse the temporal and
radial distribution of the temperature in the transient and steady states, taking into account the
dc joule-heating effects (conduction and radiative heat losses) [16].

3.1. Internal stresses induced in AGCMs below the onset of the crystallization process

In this subsection we analyse a theoretical model for the stress distribution induced by the
thermal dilatation of the amorphous glass-covered microwires, during dc joule heating, below
the onset of the crystallization process (in the amorphous phase of the sample).

So, let us consider an AGCM in the same conditions as above (i.e. placed in vacuum at a
pressure less than 103 Pa), through which a dc current passes. We will calculate the temporal
and radial temperature distributions in the transient and steady states, taking into account the
linear dependence of the electrical resistivity on temperature. We assume that the heat loss
by the Thomson effect is negligible (the ends of the sample are thermally isolated) and we
will not explicitly consider the structural changes appearing in the electrical resistivity below
crystallization temperature.

In our theoretical model we neglect the resistivity variations due to structural processes
during annealing below the crystallization temperature. A few per cent variation of resistivity
can be experimentally observed in the case when the annealing temperature is approaching the
crystallization temperature but has to be verified on a per case basis. This fact has no significant
consequences because, as follows from the electrical resistivity measurements [17, 18], these
changes represent only a small percentage of the resistivity variation with temperature. The
effect of the structural changes on the electrical resistivity becomes significant only for those
values of the dc leading to temperatures close to the crystallization one. In order to determine
the temperature distribution in an AGCM annealed by the joule effect, we use the Fourier heat
conduction equation with the boundary conditions required by the existence of the metal–glass
interface and by the surface heat losses.

3.1.1. Temperature distribution in dc joule-heated AGCMs

(a) Temperature distribution in the metallic core. As we can see from (13) and1 (14),
the calculation of the internal stresses demands the knowledge of the radial temperature
distributions, T = T (r) (in the metallic core) and t = t (r) (for the glass insulation). Thus, our
following purpose is to determine these two temperature fields.

In the transient state the energy developed by the joule effect is consumed to increase the
sample’s internal energy, whereas in the steady state the joule energy ensures the heating of the
glass insulation of the AGCM in order to compensate the thermal losses through the microwire
surface.

The heat developed in unit volume by the joule effect in the metallic core has the form

Wi = ρm j 2(r) = ρ0 {1 + α [Tm(r, t) − T0]} j 2(r), (29)

where ρm = ρm(r, t) is the resistivity at temperature Tm(r, t), α is the thermal coefficient of
the resistivity, t is the time during which the electrical current passes through the sample, ρ0 is
the resistivity at the room temperature (T0), and j (r) is the current density distribution in the
sample. We assume that [16]

j (r) ≡ j = I

S
= constant.
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The heat generated in the sample is a function of r and t (time), for each value of the
electrical current, I (A). In the transient state the energy conservation law for the sample
becomes

ρMc
dT

dt
= (ρ∞ − ρm)

I 2

S2
, (30)

where ρM is the mass density, c is the specific heat and ρ∞ = ρ∞(r) is the electrical resistivity
in the steady state. The temperature field Tm(r, t) can be obtained by integrating (30), taking
into account (29). The result is

Tm(r, t) = T0 + [Tm(r) − T0]

[
1 − exp

(
− αρ0 I 2

cρMS2
1

t

)]
. (31)

Here Tm(r) is the temperature of the microwire’s metallic core in the steady state (at the thermal
equilibrium) and S1 = π R2

m is the cross-section of the metallic core. Using the Fourier heat
conduction equation [19]

1

r

d

dr

(
dTm(r)

dr

)
+ Wi

km
= 0 (32)

and the expressions corresponding to the initial conditions

Tm(r, I = 0) = T0, ρm (r, I = 0) = ρ0, (33)

we obtained the radial temperature distribution Tm(r) in the metallic core of the AGCM, at
thermal equilibrium (in steady state, t → ∞):

Tm(r) = T0 − α−1 + C(I )J0

(
r
√

αρ0 I 2k−1
m S−2

1

)
, (34)

where J0 are the zero-order Bessel functions, km is the thermal conductivity of the metallic core
and C = C(I ) is the integration ‘constant’, that is a function of the electrical current I (A). For
I = 0, from (33) and (34), it follows that C(0) = α−1. The electrical resistivity in the steady
state, ρ∞(r), is given by the relation

ρ∞(r) = ρ0C(I )αJ0

(
r
√

αρ0 I 2k−1S−2
)

. (35)

In order to determine the temperature distribution in the metallic core, the corresponding
boundary conditions must be considered.

(b) Temperature distribution in the glass insulation. In the steady state (t → ∞), the thermal
equilibrium between the sample and the environmental medium is achieved. In this case,
the heat flux from the metallic core—generated by the joule effect—is received by the glass
insulation. Using the Fourier heat conduction equation for Rm < r < Rw,

1

r

d

dr

(
r

dTg(r)

dr

)
= 0, (36)

we now calculate the equilibrium temperature of the glass insulation, Tg(r). The general
solution of equation (36) reads

Tg(r) = A1 ln r + A2, (37)

where the integration ‘constants’ A1 = A1(I ) and A2 = A2(I ) are functions of the same
parameter I (A), their physical significance appearing in the following subsection.
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(c) Boundary conditions for the metal–glass interface. In order to determine the final
expressions for the temperature Tm(r) in the metallic core (34) and in the glass insulation (37),
we must use the following boundary conditions:

(i) in the thermal steady state, the heat flux from the metallic core is received by the glass
insulation. This heat flux (from the metal–glass interface) must be continuous. So, for
r = Rm we must have

km(dTm/dr) = kg(dTg/dr), (38)

where km and kg are the coefficients of thermal conductivity for the amorphous metallic
core and glass insulation, respectively;

(ii) on the metal–glass interface (r = Rm), the temperatures from the adjacent regions must be
equal:

Tm(Rm) = Tg(Rm); (39)

(iii) in the steady state (t → ∞), on the outer surface of the microwire, the thermal equilibrium
between the sample and the environmental medium is achieved by radiative heat loss:

−dTg

dr

∣∣∣∣
r=Rw

= Pk−1
g [T 4(Rw) − T 4

0 ], (40)

where P = 2σeL/Rw is the so-called microwire’s loss parameter, while L is the length
of the sample.

Using the boundary conditions given by (38), (39) and (40) we get the following relations:

− kmk−1
g RmC(I )

√
αρ0 I 2(kmπ2 R4

m)−1 J1

(
Rm

√
αρ0 I 2(kmπ2 R4

m)−1

)
= A1, (41)

A1 ln Rm + A2 = T0 − α−1 + C(I )J0

(
Rm

√
αρ0 I 2(kmπ2 R4

m)−1

)
(42)

and

A1 ln Rw + A2 = [
T 4

0 − A1km(Rw P)−1
]1/4

, (43)

where J1 are the first-order Bessel functions. From (41), (42) and (43) we obtain C(I ),
A1 = A1(I ) and A2 = A2(I ) as follows.

The ‘constant’ A1 = A1(I ) results as a numerical solution of the following transcendent
equation:

A1


ln

(
Rm

Rw

)
+ kgS1

Rm I
√

kmαρ0

J0

(
Rm

√
αρ0 I 2(kmπ2 R4

m)−1
)

J1

(
Rm

√
αρ0 I 2(kmπ2 R4

m)−1
)



= T0 − 1

α
−
(

T 4
0 − A1

P Rw

)1/4

. (44)

For each given value of the annealing current I (A), one can obtain a corresponding numerical
value of the ‘constant’ A1 = A1(I ). Then, the numerical values of C(I ) simply result from

C(I ) = −kgS1

(
Rm I

√
kmαρ0

)−1
A1

[
J1

(
Rm

√
αρ0 I 2(kmπ2 R4

m)−1

)]−1

, (45)

where A1 (already known) must be introduced. At the same time, the constant A2 results
immediately from (43). We observe that the parameter C(I ) depends on the electrical current
I = I (A), the material constants α, ρ0, km, kg and the sample’s dimensions: Rm, Rg and
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Table 1. The characteristics of the amorphous sample.

Value and
Characteristic measurement
quantity Significance units

c Specific heat 530 J kg−1 K−1

e Coefficient of the thermal emittance 0.43
km Thermal conductibility of the metallic core 30 W mK−1

kg Thermal conductibility of the glass insulation 1.177 W mK−1

ρM Mass density 7.2 × 103 kg m−3

ρ Resistivity at the room temperature 1.24 × 10−6 
 m
T0 Room temperature 293 K
L Length of the sample 250 mm
Rm Radius of the metallic core 9 µm
Rw Radius of the amorphous glass-covered microwire 18 µm

Table 2. The numerical values of C(I ), A1(I ) and A2(I ) for different values of the electrical dc,
I (A).

No. I (mA) C(I ) A1 = A1(I ) A2 = A2(I )

1 1 5772.63 −0.001 58.3385
2 5 5845.17 −0.018 130.681
3 7 5869.32 −0.035 154.632
4 9 5890.25 −0.058 175.293
5 14 5934.20 −0.140 218.287
6 17.8 5962.61 −0.229 245.668
7 21 5984.30 −0.320 266.308
8 23 5997.06 −0.383 278.309
9 25 6009.28 −0.454 289.715

10 27 6021.05 −0.530 300.588
11 28 6026.78 −0.571 305.841

L. For different values of the electrical current I (A), the structural changes (metastable
phase relaxations) take place in the metallic region of the microwire. Consequently, the C(I )
parameter is called the coefficient of metastable phase relaxations and it explicitly contains the
influences of the structural transformations that occur in the material due to the heat treatment
itself.

For the amorphous glass-covered microwire’s characteristics given in table 1 we have
found the numerical values for C(I ), A1(I ) and A2(I ) as numerical solutions of nonlinear
equations (43), (44) and (45), for 11 given values of the electrical dc in the interval I ∈
[1–28] mA (table 2). The higher the value of the direct current I (A), the higher C(I ), A1(I )
and A2(I ) are.

By introducing the numerical values of C(I ), A1(I ) and A2(I ) in the general
relations (31), (34) and (37) we have obtained

(i) the spatial temperature distribution, Tm(r), in the steady state (at the thermal equilibrium)
in the microwire’s metallic core:

Tm(r) = T0 − α−1 + C(I )J0

(
r
√

αρ0 I 2k−1
m S−2

1

)
; (46)

(ii) the spatio-temporal temperature distribution, Tm(r, t), in the joule-heated AGCMs, in the
temperature region situated below the one corresponding to the onset of the crystallization
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Figure 2. The temporal evolution of temperature T (t) in the centre of the AGCM.

process:

Tm(r, t) = T0 +
[

C(I )J0

(
r I S−1

1

√
αρ0k−1

m

)
− α−1

] [
1 − exp

(
− αρ0 I 2

cρMS2
1

t

)]
; (47)

(iii) the temperature distribution, Tg(r), in the steady state (at the thermal equilibrium) in the
microwire’s glass insulation:

Tg(r) = A1(I ) ln r + A2(I ), (48)

the transient temperature in the microwire’s glass insulation being not relevant.

On the basis of the established relations (46), (47) and (48) with the numerical values of
C(I ), A1(I ) and A2(I ) we have calculated the temporal evolution and radial distribution
of temperature at different values of the direct current which passes through an AGCM
with a Fe77.5Si7.5B15 composition and the above mentioned characteristics. With the aid of
relations (29), (31) and (34), we can also obtain the electrical resistivity of the AGCM’s metallic
core in the transient state:

ρm(r, t) = ρ0 + ρ0

[
C(I )αJ0

(
r
√

αρ0 I 2k−1S−2
1

)
− 1

] [
1 − exp

(−αρ0 I 2ρ−1
M c−1S−2

1 t
)]

.

(49)

Figure 2 presents the temporal evolution of the temperature for different values of the dc
I (A). In this figure we observe an increase of temperature with time during which the electrical
current passes through the sample, until it reaches the maximum equilibrium value. The higher
the value of the direct current, the faster the maximum value of the temperature is reached.

Figure 3 illustrates the temperature distribution at the thermal equilibrium in the AGCM’s
cross-section for a dc value of I = 17.8 mA. As this figure shows, the temperature difference
between the centre of the microwire’s metallic core and its glass insulation is very small
(∼=0.004 ◦C), and that between its centre and its outer glass surface is of ∼=0.0163 ◦C. Thus,
we can consider that the temperature is practically constant in the metallic core’s cross section,
and so the joule effect annealing ensures a uniform heating of the sample. We also observe
an important decrease of the equilibrium temperature Tg(r) in the microwire’s glass insulation
(Rm < r < Rw) due to the radiative heat losses.

Using the proposed theoretical model we can calculate the maximum values reached by
the temperature in the samples for different values of the applied dc.
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Figure 3. The temperature distribution at the thermal equilibrium in the microwire’s cross-section
for an electrical dc value of I = 17.8 mA.

3.1.2. Internal stresses induced by the radial temperature gradients. In this subsection, we
will calculate, using the temperature distribution (47), the internal stress distribution induced in
an AGCM through which an electrical dc of I (A) intensity passes. Applying to AGCM (with
characteristics presented in table 1) an electrical dc of I = 7 mA (with the aid of (47) and (48)
in the system (24)–(28)) we calculate the five constants, Cm

1 , Cg
1 , Cg

2 , bm and bg, that will be
used in relations (13). We so determine the internal stress distribution induced by the glass
cover in the metallic core of AGCM, due to the different dilatation effects of the two materials
in contact. For the same value of the electrical dc (I = 7 mA), figure 4 shows the radial
distribution of the internal stresses induced during the heating of the sample until the onset of
the crystallization process, in the metallic core.

As we see from figure 4, the internal stresses σ m
rr , σ m

θθ and σ m
zz present a continuous

increasing of their values until they reach the maximum values at the metal–glass interface,
which are about 108 Pa. A quick comparison between the values of stresses achieved after
the preparation process [4] and those obtained at the end of the first stage of the treatment
emphasizes a decrease of these stresses, by approximately one order of magnitude. Also, as a
consequence of the negligible variation of the radial temperature in the section of the microwire,
comes a very small global relative variation of the stresses’ values, of about ∼=0.0016%.
Another important feature of this stage of the treatment is that referring to the variation of
the stresses as a function of the samples’ dimensions. Thus, one can find that

• for the same radius of the metallic core, the higher the thickness of the glass cover, the
higher the stresses’ values are, and

• for the same value of the glass cover’s thickness, the higher the radius of the metallic core,
the smaller the stresses’ values are.

Now, let us focus our attention on the variation of the internal stresses induced in the
AGCM with Rm = 3.65 µm and Rw = 11.15 µm after t = 20 s at the beginning of
the joule-heating process, for different values of the applied electrical dc, I (A). The results
of this analysis are given in table 3, which contains the maximum values of the internal
stresses induced in the metallic core during the dc joule heating for the microwire having
the characteristics given in table 1. At a first glance we see that the higher the electrical dc
value, the smaller the internal stresses are. This behaviour is in good agreement with the results
presented in the literature [20].



2702 I Aştefănoaei et al

(a) (b)

(c)

Figure 4. Internal radial, azimuthal and axial stresses’ distributions for a given electrical dc value
of I = 7 mA.

Table 3. The maximum values of the internal stresses for different values of the electrical dc.

No. I (mA) σmax
rr (MPa) σmax

θθ (MPa) σmax
zz (MPa)

1 1 96.2 96.2 192
2 5 40.3 40.3 80.6
3 7 40.07 40.07 80.14
4 9 40.05 40.06 80.3
5 14 39.8 39.8 79.6
6 23 38.6 38.6 77.23

3.2. Internal stresses induced during the crystallization process

In this section we will analyse the internal stress distribution induced during the non-isothermal
crystallization processes in joule-heated AGCMs. We first present a theoretical (and the
associated numerical) model able to describe the kinetics of the non-isothermal crystallization
mechanism. Then, using the obtained results, we evaluate the internal stresses induced in the
AGCM structure during the crystallization process.

3.2.1. Thermal behaviour and crystallization kinetics analysis of the AGCMs. In this
subsection, we develop a numerical model within the context of the classical theory of
phase evolution applied to AGCMs to simulate the kinetics of nucleation during the non-
isothermal crystallization process. The aim of this study is to analyse the thermal behaviour
and internal stress distribution of the joule-heated amorphous glass-covered microwires in
such conditions. More precisely, we present a numerical model for the time evolution of the
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sample’s temperature and for the volume fraction crystallized with time, x(t), assuming that the
crystal growth and the Avrami crystallization rate constant have an Arrhenius type temperature
dependence, K = K (T ). We also consider that the nucleation frequency K0 is constant.

There are several methods to describe the crystallization kinetics. The most common
approach used in this regard is the Johnson–Mehl–Avrami (JMA) model [19], in which the
relative crystallinity is a function of time, x = x(t). From the direct experimental observations,
it is known that the crystallization process in the joule heated AGCMs is an exothermal one.
The energy developed by the joule effect is consumed in the crystallization process to increase
the internal energy of the sample and to compensate the radiative heat losses. The increase
of the applied dc I (A) gives rise to an increase of the electrical resistivity, and subsequently
leads to a corresponding increase of internal energy. The final temperature of the sample results
from the balance between the applied electrical power and the dissipation effects in the fully
crystallized sample. For a more accurate picture of the process, we consider in our model the
following hypotheses:

• the structure dependent parameters like ρM (the mass density of the metallic core) and c
(specific heat) are constant;

• the thermal emittance coefficient, e, is also constant during the heating treatment;
• the results obtained in the above section showed that, for different values of the applied dc,

the temperature of the sample is approximately constant in the whole cross-section of the
metallic core. For this reason we will neglect in the following the conduction heat losses
and assume that the temperature in the metallic core’s cross-section is constant.

In our model, the energy released during the crystallization process appears to be a function
of temperature rather than time, as in the case of the isothermal crystallization, because the
non-isothermal crystallization process may be considered as composed of a great number of
infinitesimally small isothermal crystallization steps. The crystallization rate parameter can be
described by the exponential relation (Arrhenius form) as follows:

K (T ) = K0 exp (−nQ/kT ) , (50)

where Q is the growth or diffusion activation energy, T is the absolute temperature and k is the
Boltzmann constant. The activation energy Q is strongly dependent on the type of nucleation
in the crystallization process. The rate of transformation in the non-isothermal crystallization
process is given by the relation [21]

dx(t)

dt
= n [1 − x(t)] {− ln [1 − x(t)]} n−1

n K (1/n)

0 exp

(
− Q

kT

)
. (51)

In order to analyse the thermal behaviour and the crystallization processes of the AGCMs
we introduce a new timescale, whose zero coincides with the onset of the crystallization
process, at the steady-state temperature value of the heated amorphous sample, Tm(r, I ) ≡
TM(I ) = TM, where I (A) is the intensity of the electrical dc. The crystallization process starts
from t = 0, when an additional amount of energy per unit time is homogeneously released to
the sample. The crystallization power density, Wef, expressed in W m−3, is

Wef = �Heff
dx(t)

dt
, (52)

where �Heff is the amount of the total density of crystallization heat effectively contributing
to the extra heating of the AGCM, and relative crystallinity (the volume fraction crystallized
with time) x(t) represents the solution of the JMA equation [22]. At the initial moment, t = 0,
the transformed volume fraction is x(0) = 0, while at the equilibrium of the crystalline phase,
x(t → ∞) = 1.
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During the sample’s crystallization, the energetic balance between the crystallization
power density (52), the heat developed in the unit volume of the metallic core by the joule
effect,

Wi = ρ(t)
I 2

S2
, (53)

and the radiative heat loss simply reads

ρMc
dT (t)

dt
= Wef(t) + ρ(t)

I 2

S2
− P

[
T 4(t) − T 4

M

]
, (54)

where

ρ(t) = ρamorph(t) [1 − x(t)] + ρcrys(t)x(t) (55)

is the electrical resistivity of the AGCM during the crystallization process. In this equation

ρamorph(t) = ρm
{
1 + αamorph [T (t) − TM]

}
(56)

represents the electrical resistivity of the amorphous phase, αamorph is the corresponding thermal
coefficient of this resistivity, while

ρcrys(t) = ρm
{
1 + αcrys [T (t) − TM]

}
(57)

represents the electrical resistivity of the crystalline phase, where αcrys is the corresponding
thermal coefficient.

Thus, at the initial moment, t = 0, the electrical resistivity is ρ(t = 0) = ρamorph(t =
0) = ρm, i.e., the sample as a whole is in the amorphous state, while at the equilibrium of
the crystalline phase the electrical resistivity is given by ρ(t → ∞) = ρcrys(t) (the sample is
completely crystallized).

Introducing (55) and (56) in (57) one can obtain the electrical resistivity ρ(t) of the AGCM
during the crystallization process:

ρ(t) = ρm
{
1 + αamorph [T (t) − TM]

}+ ρm(αcrys − αamorph) [T (t) − TM] x(t). (58)

In the case of joule heating, an increase of electrical resistivity implies a corresponding
increase of the joule power, and subsequently a rapid increase of the sample’s temperature.
The kinetics of this process must be studied in order to precisely control the structural
transformations of the AGCM during the crystallization process. In the non-isothermal
crystallization process of the sample, energetic balance between the crystallization power
density (52), the heat developed in the unit volume by the joule effect in the metallic core (53)
and radiative heat loss is given by

ρMc
dT (t)

dt
= �Heffn [1 − x(t)] {− ln [1 − x(t)]}(n−1)/n K 1/n

0 exp

(
− Q

kT

)

− P
[
T 4(t) − T 4

M

]+ ρm
I 2

S2
+ ρm

[
γ x(t) + αamorph

]
[T (t) − TM]

I 2

S2
, (59)

where γ = αcrys − αamorph.
The relations (51) and (59) form a differential equation system with the unknown quantities

T (t) and x(t). Passing through the sample an electrical dc of I (A) = 17.8 mA, from (46) we
obtain the equilibrium temperature of the amorphous phase at the initial moment, TM = 248 ◦C.
By best fit to experimental data we consider the same particular values for the adjustable
parameters (the kinetic exponent n = 3, 6 and �Heff = 5.5 × 108 J m−3). Also, in our
numerical analysis we consider that in the non-isothermal crystallization process the growth or
diffusion activation energy is Q = 2.24 eV.
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Figure 5. The temporal evolution of temperature, T (t), in the non-isothermal crystallization
process.

The numerical solution of the above mentioned differential equation system (i.e. the
temperature T (t) of the sample for an applied electrical dc of I (A) = 17.8 mA) is presented
in figure 5. We observe that the entire non-isothermal crystallization process predicted by this
model ranges from 248 to 800 ◦C. The numerical analysis gives for the AGCM’s temperature
three relative maximum values, corresponding to three successive stages of crystallization, as
follows: the first stage corresponds to the temperature Tx1 = 535 ◦C and the second one to
Tx2 = 689 ◦C, while the third stage appears at Tx3 = 784 ◦C. Structurally speaking, the first
temperature corresponds to the formation of αFe(Si) phase, the second one to the precipitation
of Fe2B and the third one to Fe23B6.

This behaviour is in good agreement with the experimental results obtained by differential
scanning calorimetry (DSC) and presented in figure 6. This figure shows the dependence of the
heat flow as a function of temperature (in ◦C) for two different heating rates. As one can see,
for a heating rate of 20 K min−1 the DSC curve exhibits two sharp peaks at T1 = 540 ◦C and
T2 = 685 ◦C and also a third flattened peak centred on T3 = 780 ◦C.

3.2.2. Stress calculation during the crystallization process. The results regarding the spatio-
temporal temperature distribution already obtained in section 3.1.1 and synthesized in figure 3
allow us to consider that, with a very good approximation, the temperature is constant in the
section of the microwire. With this conclusion, the relations (1)–(4) (which constitute the basis
of the model for the determination of the internal stresses induced in AGCM) become

d

dr

[
1

r

d(rum
r )

dr

]
= 0, (60a)

dum
z

dz
= constant, (60b)

and

d

dr

[
1

r

d(rug
r )

dr

]
= 0, (61a)

dug
z

dz
= constant. (61b)
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Figure 6. The DSC curves for Fe77.5Si7.5B15 AGCMs.

The solutions of equations (60) are

um
r (r) = Cm

1 r, (62a)

and

um
z = bmz, (62b)

where we have taken into account that um
r (r = 0) must be finite; this fact implies the

cancellation of the term which contains the second integration constant. In the same manner,
for equations (61) we can find the following solutions:

ug
r (r) = Cg

1r + Cg
2

r
(63a)

and

ug
z = bgz. (63b)

In the above relations, Cm
1 , bm, Cg

1 , Cg
2 and bg are integration constants.

Using the method already presented in section 2 and taking into account the constant value
of the temperature in the section of the microwire (i.e. the null temperature gradients), for the
stresses in the metallic core of the sample we obtained

σ m
rr = Em

(1 + µ)(1 − 2µ)

(
Cm

1 + µbm
)
, (64a)

σ m
θθ = Em

(1 + µ)(1 − 2µ)

(
Cm

1 + µbm
)

(64b)

and
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σ m
zz = 2Emµ

(1 + µ)(1 − 2µ)

(
Cm

1 + µbm
)+ Embm, (64c)

while for the glass cover we have found

σ g
rr = Eg

(1 + µ)(1 − 2µ)

(
Cg

1 + µbg
)− Eg

1 + µ

Cg
2

r 2
, (65a)

σ
g
θθ = Eg

(1 + µ)(1 − 2µ)

(
Cg

1 + µbg
)+ Eg

1 + µ

Cg
2

r 2
(65b)

and

σ g
zz = 2Egµ

(1 + µ)(1 − 2µ)

(
Cg

1 + µbg
)+ Egbg. (65c)

The five integration constants can be determined with the aid of the same above mentioned
five conditions (19)–(23), taking into account the different heating of the two materials with
different thermal expansion coefficients. For this purpose we will use the expression which
gives the resultant strain due to the heating of the two materials. Following [23] we suppose
that the thermal expansion coefficient of the metallic core during the crystallization process is
written as a function of volume fraction crystallized with time, x(t), as follows:

αm = αamorph [1 − x(t)] + αcrysx(t). (66)

Thus, at the initial instant of time, t = 0, the thermal expansion coefficient of the
metal is αm(t = 0) = αamorph (i.e., the sample as a whole is in the amorphous state),
while at the equilibrium of the crystalline phase the thermal expansion coefficient is given
by α(t → ∞) = αcrys (the sample is completely crystallized). The resultant strain will be

ε = εm − εg = (αm − αg) [T (t) − TM] = [(αamorph − αg)

+ (αcrys − αamorph)x(t)] [T (t) − TM] . (67)

Using (62), (63), (64a), (64c), (65a), (65c) and (67) in (19)–(23) an algebraic system with five
equations results, for the five unknown constants: Cm

1 , bm, Cg
1 , Cg

2 and bg. Fortunately, this
system can be solved analytically. The solution of this system (more precisely, only Cm

1 and
bm) is needed for the determination of the expressions for the internal stresses induced in the
AGCM’s metallic core during the crystallization process. We get

σ m
rr = σ m

θθ = 3Eg EmS[(αamorph − αg) + (αcrys − αamorph)x(t)](T (t) − TM)

(Eg + 3Em)S + 4Em
(68a)

and

σ m
zz = σ m

rr

(Eg + Em)S + 2Em

EgS + Em
. (68b)

As we expected, the internal stresses induced in this stage of the thermal treatment depend only
on time. The dependences σ m

rr = σ m
rr (t), σ m

θθ (= σ m
rr ) = σ m

θθ (t) and σ m
zz = σ m

zz (t) are shown in
figure 7. As this figure shows, there is no major difference between their temporal variation
(the two curves have approximately the same shape) except the magnitude of the maximum
values reached by the two stresses (σ m

rr = σ m
θθ and σ m

zz ).
Also, as one can see, the most significant temporal variation of the stresses induced in the

crystallization process appears during the first crystallization stage, which corresponds to the
formation of αFe(Si) phase. After the precipitation of this compound, the stresses tends rapidly
to certain constant values which correspond to the equilibrium of the fully crystallized sample
(about 271 MPa for σ m

rr = σ m
θθ and 761 MPa for σ m

zz ).
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Figure 7. Temporal variation of the internal stresses induced in the AGCM during the crystallization
process.

3.3. Internal stresses induced in the AGCM during the cooling from T crys
∞ to room temperature

3.3.1. Temperature distribution in the sample during the cooling process from T crys
∞ to room

temperature

(a) In the metallic core. The next stage of the thermal treatment is the cooling of the sample
from the equilibrium temperature of the crystalline phase, T crys

∞ , to room temperature, Tw . As
already known, in order to determine the internal stresses induced in the AGCM during the
cooling process, we must first get the temperature distribution in the sample. This temperature
distribution results as the solution of the Fourier heat equation. Keeping in mind the spatial
symmetry of the problem, we will write this equation in a cylindrical coordinate system:

∂T1

∂ t
= a1

(
∂2T1

∂r 2
+ 1

r

∂T1

∂r

)
. (69)

The solution of this equation is

T1(r, t) = Tw + (T crys
∞ − Tw)

∞∑
j=1

2J0(β j
r
R )

β j J1(β j)
exp

(
−a1β

2
j

R2
t

)
, (70)

where J0(β j
r
R ) and J1(β j ) are the zeroth and first order Bessel functions respectively, β j are the

solutions of the characteristic equation J0(β) = 0 and a1 = km
ρmcp

. We also used the boundary

conditions T1(r, 0) = T crys
∞ and (− ∂T

∂r )r=R = 0. The expression (70) represents the spatio-
temporal distribution of the temperature in the sample during the cooling process. Separately,
these two dependences (radial and temporal) appear as in figures 8 and 9 respectively.

Figure 8 shows the spatial (radial) distribution of the temperature in the metallic core of
the AGCM after t = 0.2 µs from the beginning of the cooling process, while figure 9 shows
the temporal evolution of the temperature in the centre of the AGCM. Both dependences were
drawn for the same sample, having Rm = 3.65 µm and Rw = 11.30 µm. From figure 8 we
observe that the difference between the temperature in the centre of the AGCM and at the point
r = Rm is very small (being about 7.469 × 10−9 ◦C). Consequently, we may consider that the
sample cools uniformly in its cross-section during the cooling process. Besides, this feature
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Figure 8. Radial temperature distribution after t = 0.2 µs from the beginning of the cooling
process.

Figure 9. Temporal distribution of the temperature in the metallic core during the cooling process.

persists during the whole cooling process. As for the time needed for the sample to reach room
temperature, as figure 9 shows, it is of the order of micro-seconds.

(b) In the glass cover. Except the boundary conditions and the constant a1 (here a1 → a2 =
kg

ρgcg
), this problem coincides with that given in the previous paragraph. So, the Fourier heat

equation will be

∂T2

∂ t
= a2

(
∂2T2

∂r 2
+ 1

r

∂T2

∂r

)
, Rm < r < Rw, (71)

with the following boundary conditions:

T2(r, 0) = T crys
∞ , T1(r = Rm, t) = T2(r = Rm, t), T2(r = Rm, t = 0) = T crys

∞ ,

T2(r = Rw, t = 0) = Tw.

Its solution is given by

T2(r, t) = π(T crys
∞ − Tw)

∞∑
j=1

J 2
0 (α j )Z0(α j r/Rm) exp[−a1α

2
j t/R2

m]
J 2

0 (α j ) − J 2
0 (α j Rw/Rm)

+ T crys
∞ ln

[
Rw/r

]+ Tw ln
[
r/Rm

]
ln
[
Rw/Rm

] , (72)
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(a) (b)

(c)

Figure 10. Internal radial, azimuthal and axial stresses induced during the cooling process.

where

Z0(α j r/Rm) = N0(α j Rw/Rm)J0(α j r/Rm) − N0(α j r/Rm)J0(α j Rw/Rm). (73)

In the above relation J0(α j r/Rm) are the first order Bessel functions, N0(α j r/Rm) are the

Neumann functions, a2 = kg

ρgcg
, and α j are the roots of the characteristic equation:

J0(α)

J0(αRw/Rm)
= N0(α)

N0(αRw/Rm)
. (74)

3.3.2. Internal stresses induced in the AGCM during the cooling process. In order to find
the internal stresses induced in the AGCM during the cooling process we use (70) and (72)
in (13) and (14) (where one has to notice that T2 in relation (72) represents in fact t (r) from
relations (14)), then to find the integration constants Cm

1 , Cg
1 , Cg

2 , bm and bg we must assume
the condition set (19)–(23). The final form for σ m

rr , σ m
θθ and σ m

zz result by substituting the already
obtained constants in (13) and (14).

We preferred to give a graphic solution. The three stresses σ m
rr , σ m

θθ and σ m
zz were

represented in figure 10.
As one can see, all three stresses exhibit the same behaviour for this phase of the

thermal treatment. The three curves show a continuous increasing of the stresses, which are
compressive everywhere in the range (0, Rm).

Briefly, in this section we calculated the thermal stresses that correspond to the successive
heating, crystallization and cooling treatments of the AGCM, taking into account the
differences between the thermal expansion coefficients of metal and glass.

Therefore, during the heating of the amorphous state, when the temperature values are
below the onset temperature of crystallization we have found that

• for higher value of the applied dc current the maximum value of the temperature is reached
faster,
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Figure 11. The internal total stresses induced in the AGCM during the thermal treatment (heating–
crystallization–cooling) and considering the supplementary stresses induced by the continuous
drawing.

• for a specified value of the dc current the temperature is practically constant in the metallic
core’s cross section,

• in the AGCM’s cross section the internal stresses present a continuous increasing of
their values from the AGCM’s centre to the metal–glass interface, where they reach the
maximum values, close to 108 Pa,

• for a specified radius of the metallic core, the values of the stresses in the metallic core
increase with the glass cover thickness, so a higher value of the stresses corresponds to a
higher value of the glass cover thickness;

• for a specified value of the glass cover’s thickness, a smaller value of the stresses in the
metallic core corresponds to a higher metallic core radius;

• smaller internal stresses are obtained at higher values of the electric dc current.

Also, during the crystallization process, the AGCM’s temperature has three relative
maximum values, that correspond to the three successive stages of crystallization. The first
maximum of the temperature corresponds to the formation of the αFe(Si) phase, the second
one to the precipitation of the Fe2B and the third one to the formation of the Fe23B6. During
the first crystallization stage, the induced stresses present a significant temporal variation (see
figure 7). After the precipitation of αFe(Si) phase, the stresses tend rapidly to certain constant
values which correspond to the equilibrium of the fully crystallized sample.

In the last stage of the thermal treatment, during the cooling of the AGCM, the compressive
stresses are in the range (0, Rm).

4. Results and discussion

All the considerations below refer to the same AGCM as studied above, having Rm = 3.65 µm
and Rw = 11.30 µm. The total stresses are calculated by adding to the internal stresses induced
in the preparation process (found in [4]) the different stress components induced in the three
considered stages of the thermal treatment (heating–crystallization–cooling). The total stress
distribution is illustrated in figure 11. We mention that, in order to draw the curves for σ m

rr (r),
σ m

θθ (r) and σ m
zz (r), we have also considered the supplementary ‘frozen-in’ internal stresses

induced in the preparation process of the AGCM due to its continuous mechanical drawing [4].
It is very difficult to calculate the exact magnitude and distribution of these stresses, since
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the microwire is not for its entire length in the elastic strains’ domain. We have determined
these stresses in an indirect way, by taking into account the distribution of the added stresses
and the results of magnetic measurements in the framework of the analogy with the case of
conventional microwires.

From figure 11 one can observe that the shape of the σ m
θθ (r) and σ m

zz (r) curves is the same,
but the positive values of σ m

zz (r) are almost four times the positive values of σ m
θθ (r). The σ m

θθ (r)

curve shows a positive maximum value of about σ m
θθ (r) ≈ 500 MPa at r ∼= 2.48 µm, and σ m

zz (r)

curve shows its positive maximum value of about σ m
zz (r) ≈ 1950 MPa at r ∼= 2.6 µm. After

reaching the maximum, both σ m
zz (r) and σ m

θθ (r) decrease, reaching near the surface of the metal
a small negative value (about −180 MPa for σ m

zz (3.65 µm)) and a respectively high negative
value (about −2100 MPa for σ m

θθ (3.65 µm)). σ m
rr (r) has a much moderate variation than σ m

zz (r)

and σ m
θθ (r), having only positive values. Thus, the radial stresses are tensile everywhere in the

range (0, Rm), while the azimuthal and axial ones are tensile from r = 0 to approximately
Roθ

∼= 2.83 µm (77.53% of Rm) for σ m
θθ (r) and respectively, Roz = 3.60 µm (98.63% of Rm)

for σ m
zz (r), changing sign close to the surface, where they become compressive. The σ m

rr (r)

curve reaches a maximum value at r ∼= 2.86 µm of ∼=300 MPa, then it decreases with a slope
of an absolute value higher than that of the ascendant portion of the curve (until it reaches the
maximum value). As one can see, σ m

zz (r) and σ m
θθ (r) do not intersect each other, both being

intersected by σ m
rr (r). The intersection point between σ m

zz (r) and σ m
rr (r) is at Rc

∼= 3.55 µm
(approximately 97.26% of Rm).

Starting from the point r = 0 up to the point Rc
∼= 3.55 µm there is a region in which

σ m
zz (r) is the component with the highest value and it is positive (zone I). From this point to

the point Roz = 3.60 µm there is a second region, much narrower than the first one, in which
σ m

rr (r) is the highest stress component and it is also positive (zone II). The remaining part of
the microwire (up to the metal–glass interface) constitutes a third region, dominated by the
negative values (compression) of σ m

zz (r) and σ m
θθ (r) (zone III).

As is well known, the alloy to which we have referred is highly magnetostrictive. This
feature leads to a strong coupling between the internal stresses and the magnetostriction. This
coupling determines the appearance in the metallic part of the AGCM of the easy axes of
magnetization in the directions in which the dominant internal stresses are tensile (positive),
and respectively of the hard axes of magnetization in the directions in which the dominant
stresses are compressive (negative). So, the magnetoelastic energy minimization leads to a
domain structure which presents three zones:

• zone I, r ∈ [0, Rc); due to the coupling between σ m
zz (r) (positive) and the magnetostriction

the first zone results, with an uniaxial magnetic anisotropy having the easy axis oriented
along the axis of the AGCM (Oz-axis);

• zone II, r ∈ (Rc, R0z); due to the coupling between σ m
rr (r) (positive) and the

magnetostriction the second zone results, with a radial magnetic anisotropy (also, in this
zone the compressive component σ m

θθ (r) generates a hard axis of magnetization in the
azimuthal direction);

• zone III, r ∈ (R0z, Rm]; in this zone the two compressive components (σ m
θθ (r) and

σ m
zz (r)) generate two hard axes of magnetization in the azimuthal direction and in the axial

direction respectively. Also, this zone presents a third (easy) axis of magnetization which
appears because of the coupling between the σ m

rr (r) (positive) and the magnetostriction.

Synthesizing, we can state that the stress distribution from figure 11, coupled with the high
positive magnetostriction of the Fe77.5Si7.5B15 alloy, leads in a first order approximation to an
easy axis distribution associated with a domain structure which consists of a cylindrical inner
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Figure 12. Schematic diagram of the estimated domain structure in positive magnetostrictive
AGCMs.

core (CIC) with axial magnetization (zone I) and an outer shell (OS) with radial magnetization
(zone II plus zone III) (see figure 12).

The above mentioned domain structure depends on the distribution of the total internal
stresses that appear both in the preparation process of the AGCM and in the whole thermal
treatment (heating–crystallization–cooling) and which, in turn, strongly depends on the
diameter of the metallic part of the AGCM and on the thickness of the glass cover.

Let us now analyse the changes that appear in the magnetic domain structure of the
microwire’s metallic part due to the thermal treatment, in comparison with that obtained from
the preparation process. From this analysis we may find the influence of the thermal treatment
on the AGCM’s magnetic properties.

From figure 11 one can observe that the maximum value of the axial stresses obtained after
the thermal treatment is bigger than that obtained in the preparation process (for comparison see
the figure 6 in [4]); this difference is about 450 MPa. On the other hand, the maximum values
for the azimuthal and radial stresses decrease by ∼=220 MPa and respectively ∼=210 MPa.

But most important, the intersection point between σ m
zz (r) and σ m

rr (r) (which before the
thermal treatment is at 84.6% of Rm) moved away to 97.26% of Rm. This means that zone I
enlarged significantly, by ∼=13%. Obviously, this difference must be found again in the smaller
dimensions of the remaining zones II and III. Indeed, both zone II and zone III became narrower
by ∼=2% and respectively ∼=11%. In other words, the cylindrical inner core with radius Rc

which forms the first magnetic domain with uniaxial magnetic anisotropy grows up by about
13%, while the other two magnetic domains delimited by the zone II and zone III decrease by
about the same value (13%—together). This involves the increase of the degree of magnetic
order in the sample. The first observation we made here acts in the same direction. More
explicitly, the increase of the maximum value of the internal axial stresses against the radial
and azimuthal ones produces a stronger magnetic coupling between the magnetostriction and
σ m

zz (r). These two features lead to the appearance of a large Barkhausen effect (LBE) in low
axially applied magnetic fields. Such a domain structure favours the appearance of the LBE;
the previous studies have demonstrated that the axial inner core is the effective region in which
nucleation and propagation take place, i.e., this zone is responsible for the appearance of the
LBE [24]. Following [25], the increase of the cylindrical inner core’s dimensions leads to a
corresponding increase of the remanent magnetization Mr :

Mr = Ms

(
Rc

Rm

)2

, (75)

where Ms is the saturation magnetization. Thus, the theoretical evaluations referring only to
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the preparation process of the AGCM, without considering the supplementary axial tensile
stresses induced in the preparation process due to its continuous mechanical drawing, give
for the ratio Mr

Ms
a value of about 0.72 [4], which differs by the measured value that would

correspond (through relation (75)) to a radius of the cylindrical inner core of about 94.8% of
Rm. If these supplementary axial tensile stresses are considered, the value of the ratio Mr

Ms
grows

up to 0.9, which is close to the correct (experimental) value obtained by magnetic measurements
performed using a fluxmeter method [26]; these magnetic measurements were performed at a
maximum value of the axially applied field of 150 Oe, at a frequency of 400 Hz. The studied
microwire (Rm = 3.65 µm, dg = 7.5 µm) presents a bistable flux reversal phenomenon in low
axial fields at 30 Oe. We mention that Mr is about 0.9 of Ms (measured at the maximum field).
The value of Ms measured by the fluxmeter method is close to the value measured with the
VSM (vibrating sample magnetometer) in a 1 T magnetic field. From the ratio Mr

Ms
(also called

the reduced remanence) determined experimentally it follows that the radius of the cylindrical
inner core is about ∼=95% of Rm; i.e., it is very close to the determined value from theoretical
considerations on the preparation process, also taking into account the supplementary axial
tensile stresses due to continuous drawing of the microwire.

Our theoretical model on thermal treatment of the microwires considers the supplementary
stresses due to the mechanical drawing of the microwire during the preparation process and
gives for the ratio Mr

Ms
a value of about 0.95, which is in very good agreement with the

experiment. Thus, we conclude that a proper thermal treatment (which must contain a fully
crystallization stage) of an AGCM can be considered as a useful method for increasing the
remanent magnetization Mr of an amorphous material.

Finally, we notice that the numerical values for the supplementary radial, circumferential
(azimuthal) and axial stresses were determined by best fit to experimental data obtained by
measuring the reduced remanence of the prepared microwires, after removal of the glass
cover from the metallic core (using a chemical etching technique) and applying a suitable
external axial tensile stress; the magnitude of this axial stress has been chosen such that the
theoretical intersection point between the curve representing the radial distribution of the
axial stresses σ m

zz (r), and the curve that gives the radial distribution of the radial stresses
σ m

rr (r), overlaps at the intersection point corresponding to the experimental results. On the
other hand, this supplementary axial stress produces in the other two directions (radial and
azimuthal) corresponding transverse Poisson contractions (thus, the stresses in these directions
are compressive). Supposing that the strains are elastic and homogeneous, we have

σ suppl
rr = σ

suppl
θθ = −µσ suppl

zz , (76)

where σ
suppl
rr , σ

suppl
θθ and σ

suppl
zz are the radial, circumferential and axial stresses induced due

to the mechanical drawing and µ is Poisson’s coefficient. Using the spline method in order to
model the dependences σ m

rr (r) and σ m
zz (r) as the polynomial functions Frr (r) and Fzz(r), for the

theoretical intersection point, r = Rtheor
c , we must have Frr (Rtheor

c ) = Fzz(Rtheor
c ). But, taking

into account the supplementary stress components, the intersection point becomes r = Rexper
c

instead of r = Rtheor
c . So, assuming that the supplementary stresses do not depend on r , we

must also have

Frr
(
Rexper

c

)+ σ suppl
rr = Fzz

(
Rexper

c

)+ σ suppl
zz . (77)

By solving the system of equations (76) and (77) for the considered microwire, we have
obtained the desired values of these supplementary stresses.
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5. Conclusions

In this paper we determined the values of the internal stresses induced in the radial, azimuthal
and axial directions during the thermal treatment of the magnetic AGCM Fe77.5B15Si7.5. These
stresses are owing to the successive heating, crystallization and cooling of the metal as well as
to contractions generated by the glass cover in the metal during the thermal treatment due to
difference between the thermal expansion coefficients of metal and glass. The resultant stresses
have values of an order of 109 Pa, that depend on the dimensions of the metallic part of AGCM
and the glass cover.

Taking into account the high positive magnetostriction of the Fe77.5B15Si7.5 alloy, the
following magnetic domain structure results: between r = 0 and r = Rc a zone with a uniaxial
magnetic anisotropy appears, having the easy axis oriented along the axis of the AGCM (Oz-
axis) due to the coupling between σ m

zz (r) (positive) and the magnetostriction; between r = Rc

and r = R0z a zone with a radial magnetic anisotropy appears, due to the coupling between
σ m

rr (r) (positive) and the magnetostriction. Also, in this zone the compressive component
σ m

θθ (r) generates a hard axis of magnetization in the azimuthal direction; finally, between
r = R0z and r = Rm we have a zone with two hard axes of magnetization (in the azimuthal
direction and in the axial direction) generated by the two compressive components (σ m

θθ (r) and
σ m

zz (r) respectively). Also, this zone shows a third (easy) axis of magnetization, which appears
because of the coupling between the σ m

rr (r) (positive) and magnetostriction.
The changes appearing in the magnetic domain structure of the microwire’s metallic part

due to the thermal treatment, in comparison with that obtained from the preparation process,
can be summarized in the following observations.

• The maximum value of the axial stresses obtained after the thermal treatment is higher
than that obtained in the preparation process; this difference is about 450 MPa.

• The maximum values for the azimuthal and radial stresses decrease by ∼=220 MPa and
respectively, ∼=210 MPa.

• The intersection point between σ m
zz (r) and σ m

rr (r) (which before the thermal treatment and
without considering the supplementary stresses induced by the continuous drawing is at
84.6% of Rm) moved away to 97.26% of Rm. This means that zone I enlarged significantly
(by ∼=13%), which involves the increase of the degree of magnetic order in the AGCM.
Also, the increase of the maximum value of the internal axial stresses against the radial
and azimuthal ones produces a stronger magnetic coupling between the magnetostriction
and σ m

zz (r). This feature led to the appearance of a large Barkhausen effect (LBE) in low
axially applied magnetic fields.

• After the thermal treatment and consideration of supplementary stresses induced by the
continuous drawing during the preparation process, the intersection point between σ m

rr (r)

and σ m
zz (r) moved away from ∼=94.8% of Rm to 97.26% of Rm, which means that the

reduced remanence increased from 0.90 to 0.95. The higher obtained values of the
reduced remanence in highly magnetostrictive AGCM opens up a larger field of sensing
applications for these microwires.

It is known that AGCMs are used for GMI measurements. Using these measurements
information about evolution of magnetic structure with annealing can be obtained indirectly.
P Tiberto et al [27] show that dc joule heating modifies the domain structures, enhancing the
GMI response.

The theoretical model presented in this paper directly allows us to analyse the magnetic
domains by the calculation of induced thermal stresses that appear in AGCM during both the
preparation process and dc joule-heating thermal treatment (heating–crystallization–cooling).
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